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Abstract— In this paper, the K-Winners-Take-All (KWTA)
problem is formulated equivalently to a linear program. A
recurrent neural network for KWTA is then proposed for
solving the linear programming problem. The KWTA network
is globally convergent to the optimal solution of the KWTA
problem. Simulation results are further presented to show the
effectiveness and performance of the KWTA network.

I. I NTRODUCTION

W INNER-TAKE-ALL (WTA) is an operation that iden-
tifies the largest value from multiple input signals.

Such an operation has many applications in a variety of fields
including associative memories [1], cooperative models of
binocular stereo [2], Fukushima’s neocognitron for feature
extraction, and ect [3].

As an extension of winner-take-all operation, k-winners-
take-all (KWTA) selects thek largest inputs from the totaln
inputs. It can be considered as a generalized form of winner-
take-all operation. It has recently been reported that KWTA
is computational powerful compared with the standard neu-
ral network models with threshold logic gates [4][5]. Any
boolean function can be computed by a single k-winners-
take-all unit applied to weighted sums of input variables.
Beside the applications in neural network model, KWTA
operation has important applications in machine learning,
such as k-neighborhood classification, k-means clustering,
etc. As the number of inputs becomes large and/or the
selection process should be operated in real time, parallel
algorithms and hardware implementation are desirable. For
these reasons, there have been many attempts to design very
large scale integrated (VLSI) circuits to perform KWTA
operations [6]-[14].

Unlike the traditional KWTA networks that utilize the
concept of mutual inhibition, this paper presents a neural net-
work implementation of KWTA operation based on the linear
optimization formulation, which has theO(N) complexity.
For this neural network, global convergence is guaranteed
and time-varying signals can be tackled.

The rest of this paper is organized as follows: Section II
derives an equivalent linear programming (LP) formulation
of KWTA, which is suitable for the neural network design.
Section III introduces the neural network design procedure,
architecture and properties. Some simulation results are pre-
sented in Section IV to show its performance. Finally, Section
V concludes the paper.

Shenshen Gu and Jun Wang are with the Department of Mechanical and
Automation Engineering, The Chinese University of Hong Kong, Shatin,
New Territories, Hong Kong (email:{ssgu, jwang}@mae.cuhk.edu.hk).

This work was supported by a CUHK Direct Grants under ProjectCode
2050375

II. EQUIVALENT REFORMULATIONS

Mathematically, KWTA operation can be formulated as a
function as follows:

xi =

{

1, if vi∈{k largest elements ofv};
0, otherwise;

(1)

for i = 1, . . . , n; wherev ∈ Rn andk ∈ {1, . . . , n − 1}.
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Fig. 1. The diagram of KWTA operation

The function (1) can be further express by the following
integer program:

minimize −vT x,

subject to eT x = k,

xi ∈ {0, 1}, i = 1, 2, . . . , n;
(2)

where v = [v1, . . . , vn]T , e = [1, . . . , 1]T ∈ Rn, x =
[x1, . . . , xn]T ∈ Rn andk is a nonnegative integer less than
n.

Fig. 1 shows the KWTA operation graphically. In this
section, we will formulate the KWTA operation as a linear
programming problem, which is suitable for neural network
design. Toward this objective, we should prove the following
theorem.

Theorem 1: The solution of (2) is equivalent to the solution
x∗ of the following linear programming problem (3) .

minimize −vT x,

subject to eT x = k,

xi ∈ [0, 1], i = 1, 2, . . . , n.

(3)

Proof: Since e is an n-dimensional column vector with
all its elements are1s. Therefore, in this special case, every
square submatrix ofe has determinant equals to1. As such,
vector e is said to be totally unimodular. In addition,k is
an integer. As a result of the totally unimodular property, we



can get the conclusion that the optimum solution to problem
(3) is equivalent to the solution of problem (2). The proof is
complete.

From the above proof, it can be easily found that we
can design a KWTA neural network by solving the LP
problem (3). As a basic optimization problem, there are a
lot of algorithms for solving the LP problem. But traditional
algorithms typically involve an iterative process, and long
computational time limits their usage. For this reason, the
optimization capability of the recurrent neural network has
been widely investigated and have shown promise for solving
optimization problems more effectively. After the seminal
work of Tank and Hopfield [15][16], various neural network
models for optimization have been proposed. They can be
categorized as the penalty-parameter neural network [18],the
Lagrange neural network [19], the deterministic annealing
neural network [20], the primal-dual neural network [21][22]
and the dual neural network [17][23][24].

III. M ODEL DESCRIPTION

In recent decades, several effective recurrent neural net-
works for solving linear programming problems have been
proposed. In [26], a recurrent neural network for solving LP
problems with bounded variables is presented. For KWTA
operation, the network architecture hasn + 1 neurons (the
number of integrators) and2n + 1 connections (the number
of summers) and its dynamic equations are as follows:

{

dx
dt

= λ{e(eT x − k) − ‖f(x + ey − v) − x‖2
2(ey − v)}

dy

dt
= −λ‖f(x + ey − v) − x‖2

2[ef(x + ey − v) − k]
(4)

where λ > 0 is a scaling constant,x ∈ Rn, y ∈ R,
‖ · ‖2

2 is the Euclidean norm andf : Rn → [0, 1]n is
a piecewise linear activation function which is defined by
f(x) = [f(x1), . . . , f(xn)]T and

f(xi) =







0, xi < 0;
xi, 0 ≤ xi ≤ 1;
1, xi > 1.

(5)

The main drawback of this model is that the model should
calculate a higher-order term which degrades its speed and
sensitivity.

In [27], another recurrent neural network for LP problems
is presented. The architecture of this model for KWTA has
2n + 1 neurons and3n + 1 connection and its dynamic
equations are given as following:







dx
dt

= −λ{(vT x + kz)v + e(eT x − k) − (−2x)+},
dy
dt

= −λ{(y − x)+ − e},
dz
dt

= −λ{(vT x + kz)k − 2eT (ez − v)+},
(6)

where λ > 0, x ∈ Rn, y ∈ Rn, z ∈ R, (x)+ =
[(x1)

+, . . . , (xn)+]T , and (xi)
+ = max{0, xi}, (i =

1, . . . , n).
In [28], a recurrent neural network for solving nonlinear

convex programs subject to linear constraints is introduced.

This model can be converted to solve the LP problems. For
KWTA operation, since moren variable should be use to act
as slack variables, the network architecture of this model has
2n + 1 neurons and3n + 1 connections with the following
dynamic equations:







dx
dt

= λ{−x + (x + ez + v)+},
dy
dt

= λ{(y − x)+ − e},
dz
dt

= λ{(eT x − z)+ − k},

(7)

whereλ > 0, x ∈ Rn, y ∈ Rn, andz ∈ R.
However, the above two models employ more neurons and

connections to accomplish the KWTA operation compared
with the first model.

In [29], a projection neural network to constrained opti-
mization problems is invented. This model can be used for
solving KWTA based on LP formulation withn+1 neurons
and 2n + 2 connections. The procedure of constructing a
neural network model for solving problem (3) is given as
follows:

Define a Lagrange function of (3) below

L(x, y) = −vT x − y(eT x − k) (8)

where y ∈ R is referred to as the Lagrange Multiplier.
According to the Karush-Kuhn-Tucker (KKT) condition,x∗

is a solution to (3) if and only if there exitsy∗ ∈ R such
that (x∗, y∗) satisfies the following condition:

{

−v − ey ≥ 0, x(−v − ey) = 0,

eT x − k = 0, 0 ≤ x ≤ 1.
(9)

Using the well-known projection theorem, we can easily
obtain the following Lemma.

Lemma 1: x∗ is a solution to (3) if and only if there exists
y∗ ∈ Rm such that(x∗, y∗) satisfies

{

f(x + αey + αv) − x = 0,

eT x − k = 0,
(10)

whereα is any positive constant.
Proof: See [30, pp. 267, Prop. 5.1].
Based on the equivalent formulation in Lemma 1, we

propose a recurrent neural network for KWTA operation with
its dynamical equations as follows:

{

dx
dt

= λ (−x + f(x + αey + αv)) ,
dy
dt

= λ(eT x − k),
(11)

whereλ > 0, α > 0, x ∈ Rn, y ∈ R.
The element-form of the dynamic equation (11) can be

described as follows:

{

dxi

dt
= λ (−xi + f(xi + αy + αvi)) , i = 1, . . . , n;

dy
dt

= λ(
∑n

i=1
xi − k).

(12)
In [29], it is proved that this network is globally ex-

ponentially stable. The dynamics can be easily realized in
a recurrent neural network with a single-layer structure as
shown in Fig. 2, whereλ = 1, α = 1 and f(·) can be



implemented by using a piecewise linear activation function.
As shown in Fig. 2, a circuit implementing this network
consists of2n + 1 summers,n + 1 integrators andn + 1
operational amplifiers.
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Fig. 2. Architecture of the KWTA network

The number of neurons and connections of these models
are listed in Table I. From this table, it is clear that the model
proposed in [29] has a low model complexity. For this reason,
we adopt this model for KWTA operation.

TABLE I

MODEL COMPLEXITY OF FOUR RECURRENT NEURAL NETWORKS FOR

KWTA OPERATION BASED ONL INEAR PROGRAMMING FORMULATION

Model Eqn Neurons Connections
[26] (4) n + 1 2n + 1

[27] (6) 2n + 1 3n + 1

[28] (7) 2n + 1 3n + 1

[29] (11) n + 1 2n + 1

IV. SIMULATION RESULTS

To show the effectiveness and efficiency of the proposed
KWTA neural network, the following four simulations are
performed.

In the first simulation, the inputs are set to bevi = i, (i =
1, 2, 3, 4) andk = 2; that is, select two largest signals from
the inputs. The transient behaviors ofx are shown in Fig. 3.
It can be seen that the steady outputs are[0 0 1 1]T . This
means two largest elements; i.e.,v3 andv4 are successfully
selected. From the figure, it is also obvious that the neural
network can quickly converge to the desired equilibria once
the inputs are imposed.

In the second simulation, consider 4 sinusoidal input sig-
nals ranged from−1 to 1 with constant phase difference and
k = 2. Fig. 4 illustrates the 4 input signals and the transient
outputs of the KWTA network. The simulation results show
that the KWTA network can effectively determine the two
largest signals from the time-varying signals in real time.
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Fig. 3. Transient behavior ofx
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Fig. 4. Sinusoids inputs and generated outputs of the KWTA network
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Fig. 5. Random inputs and generated outputs of the KWTA network



In order to test the response of the model to random
input signals, we further show the following experimental
results. In this test, four random signals ranged under uniform
distribution from −1 to 1 are generated and fed into the
KWTA neural network. The neural network is regulated to
determine the two largest signals at any time. Fig. 5 shows
that the KWTA network can output the correct results in the
whole period. It means that this model has good response
property to random inputs.

Finally, in order to reveal that the KWTA network has
good performance to solve the high-dimensional problems,
Fig. 6 shows the simulation results of the KWTA network
with 5, 10, 15 and 20 inputs whereα = 1, λ = 105.
It is demonstrated that the convergence rate of the KWTA
network is independent ofn.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

n=5

time (µs)

x 1(t
)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

n=10

time (µs)

x 1(t
)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

n=15

time (µs)

x 1(t
)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

n=20

time (µs)

x 1(t
)

Fig. 6. Responses of the KWTA network to different number of inputs

V. CONCLUSIONS

A KWTA network is developed for K-winners-take-all
operation based on a linear programming formulation. The
KWTA network is shown to be stable and can perform
the KWTA operation in real time. The KWTA network is
also demonstrated to be capable of solving high-dimensional
KWTA problems. In addition, compared with several exist-
ing neural networks, the KWTA network proposed has the
simplest architecture.
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