A K-Winners-Take-All Neural Network Based on Linear
Programming Formulation

Shenshen Gu and Jun Wang

Abstract— In this paper, the K-Winners-Take-All (KWTA) Il. EQUIVALENT REFORMULATIONS

problem is formulated equivalently to a linear program. A . .

recurrent neural network for KWTA is then proposed for Ma,themat'ca”y’ KWTA operation can be formulated as a
solving the linear programming problem. The KWTA network  function as follows:
is globally convergent to the optimal solution of the KWTA

problem. Simulation results are further presented to show he - { 1, if vie{k largest elements of};
3

effectiveness and performance of the KWTA network. A
0, otherwise;

1)
I. INTRODUCTION
INNER-TAKE-ALL (WTA) is an operation that iden-

tifies the largest value from multiple input signals.
Such an operation has many applications in a variety of fields

fori=1,...,n; wherev € R" andk € {1,...,n—1}.

including associative memories [1], cooperative models of R — X
binocular stereo [2], Fukushima’s neocognitron for featur v, —» X,
extraction, and ect [3]. ' KWTA '

As an extension of winner-take-all operation, k-winners- ' Network

take-all (KWTA) selects thé largest inputs from the total
inputs. It can be considered as a generalized form of winner-
take-all operation. It has recently been reported that KWTA " n
is computational powerful compared with the standard neu-
ral network models with threshold logic gates [4][5]. Any
boolean function can be computed by a single k-winners-
take-all unit applied to weighted sums of input variables.
Beside the applications in neural network model, KWTA
operation has important applications in machine learnin§}t€9er program:
such as k-neighborhood classification, k-means clustering

Fig. 1. The diagram of KWTA operation

The function (1) can be further express by the following

T

etc. As the number of inputs becomes large and/or the minimize —v'z,

selection process should be operated in real time, parallel subjectto e’z =k, (2)

algorithms and hardware implementation are desirable. For z; €{0,1}, i=1,2,...,m;

these reasons, there have been many attempts to design ve T T "

large scale integrated (VLSI) circuits to perform KWTAWPéreU _T[vl""’vn] , e =[L....,1]" € R", o =
[x1,...,2,]" € R™ andk is a nonnegative integer less than

operations [6]-[14].
Unlike the traditional KWTA networks that utilize the "'F_ 1 sh he KWTA _ hicallv. In thi
concept of mutual inhibition, this paper presents a newtl n Ig. 1 shows the operation graphically. In this

work implementation of KWTA operation based on the lineaPection, we will formulate _the.KW'I.'A operation as a linear
optimization formulation, which has th@(N') complexity. programming problem, which is suitable for neural network

For this neural network, global convergence is guaranteéjt?s'gn' Toward this objective, we should prove the follavin

and time-varying signals can be tackled. theorem. . . . .
The rest of this paper is organized as follows: Section Il Theorem 1: The solution of (2) is equivalent to the solution

derives an equivalent linear programming (LP) formulatio” ©f the following linear programming problem (3) .
of KWTA, which is suitable for the neural network design.

Section Il introduces the neural network design procedure minimize —vTx,
architecture and properties. Some simulation results are p subjectto e’z =k, ?3)
sented in Section IV to show its performance. Finally, Secti x; €[0,1], i=1,2,...,n.

V concludes the paper. . . . . .
pap Proof: Since e is an n-dimensional column vector with
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can get the conclusion that the optimum solution to problemhis model can be converted to solve the LP problems. For

(3) is equivalent to the solution of problem (2). The proof iKWTA operation, since more variable should be use to act

complete. as slack variables, the network architecture of this modsl h
From the above proof, it can be easily found that w&n + 1 neurons andn + 1 connections with the following

can design a KWTA neural network by solving the LPdynamic equations:

problem (3). As a basic optimization problem, there are a

lot of algorithms for solving the LP problem. But traditidna Zi—f =M-z+ (@ +ez+0v)"}
algorithms typically involve an iterative process, anddgon F=My—2)" e}, (7)
computational time limits their usage. For this reason, the E =Mz —2)t -k},

optimization capability of the recurrent neural networlshaynere \ > 0. 2 € R® ye R", andz € R.
been widely investigated and have shown promise for solving However, the above two models employ more neurons and

optimization problems more effectively. After the seminakgynnections to accomplish the KWTA operation compared
work of Tank and Hopfield [15][16], various neural networkith the first model.

models_for optimization have been proposed. They can be, [29], a projection neural network to constrained opti-
categorized as the penalty-parameter neural network i8], mjzation problems is invented. This model can be used for
Lagrange neural network [19], the deterministic annealingoh,ing KWTA based on LP formulation with + 1 neurons

neural network [20], the primal-dual neural network [2P]2 anq 25, + 2 connections. The procedure of constructing a
and the dual neural network [17][23][24]. neural network model for solving problem (3) is given as

[1l. M ODEL DESCRIPTION follows:

. Define a Lagrange function of (3) below
In recent decades, several effective recurrent neural net-

works for solving linear programming problems havg been L(z,y) = —0Tz — y(eTz — k) ®)
proposed. In [26], a recurrent neural network for solving LP

problems with bounded variables is presented. For KWTAvherey € R is referred to as the Lagrange Multiplier.
operation, the network architecture has+ 1 neurons (the According to the Karush-Kuhn-Tucker (KKT) conditiom?}
number of integrators) an2l + 1 connections (the number is a solution to (3) if and only if there exitg* € R such
of summers) and its dynamic equations are as follows: that(z*,y*) satisfies the following condition:

—v—ey >0, z(—v—ey) =0, )
eTe—k=0,0<z<1.

{ 9 — Me(eTz — k) — || f(z + ey — v) — z[|3(ey —v)}
L =-Af(x+ey—v)—z|3lef(z+ey—v)— kK

(4) Using the well-known projection theorem, we can easily
where A > 0 is a scaling constanty € R", y € R, obtain the following Lemma.
| - |3 is the Euclidean norm ang : R" — [0,1]" is Lemma 1: z* is a solution to (3) if and only if there exists
a piecewise linear activation function which is defined by™ € k™ such that(z*, y*) satisfies
_ T

f(x) - [f(xl)vaf(xn)] and f(z+aey+om)—x:0, (10)

0, =z <O0; efz —k=0,

fl@i)=q @, 0<z <L (5)  wherea is any positive constant.
L x> 1 Proof: See [30, pp. 267, Prop. 5.1].

The main drawback of this model is that the model should Based on the equivalent formulation in Lemma 1, we
calculate a higher-order term which degrades its speed aREPPOSe a recurrent neural network for KWTA operation with

sensitivity. its dynamical equations as follows:
In [27], another recurrent neural network for LP problems 4o _ )\ (g4 f(z+acy + av))
is presented. The architecture of this model for KWTA has { $ 4 ’ (11)
2n + 1 neurons and3n + 1 connection and its dynamic ar = Ae z —k),
equations are given as following: wherel >0, a >0,z € R", y € R.
The element-form of the dynamic equation (11) can be

d_atc = MO Tz +k2)v+e(eTz — k) — (—22)*}, described as follows:

y _ +

& _ —i}gﬁxa—? kz)/:}—7 2el(ez —v)t} doy — N\ (—z; + f(2i + ; = :

2 = ) T i itay+av)), i=1,...,n;

(6) { H =T, v — k).

where A > 0, = € R", y € R*, 2z € R, (z)T = (12)
()., (zo)T)E, and (2)T = max{0,z;}, (i = In [29], it is proved that this network is globally ex-
1,...,n). ponentially stable. The dynamics can be easily realized in

In [28], a recurrent neural network for solving nonlineara recurrent neural network with a single-layer structure as
convex programs subject to linear constraints is introduceshown in Fig. 2, where\ = 1, « = 1 and f(-) can be



implemented by using a piecewise linear activation functio
As shown in Fig. 2, a circuit implementing this netwmnrk

consists of2n + 1 summers;n + 1 integrators andw + - 10 ' ' '

operational amplifiers.
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Fig. 2. Architecture of the KWTA network

The number of neurons and connections of these models
are listed in Table |. From this table, it is clear that the ic

Fig. 3. Transient behavior af

x1074

proposed in [29] has a low model complexity. For this reas

we adopt this model for KWTA operation.

TABLE |

MODEL COMPLEXITY OF FOUR RECURRENT NEURAL NETWORKS FOR

KWTA OPERATION BASED ONLINEAR PROGRAMMING FORMULATION

Model | Egn | Neurons| Connections
26 4) n+1 2n +1
27 (6) 2n + 1 3n+1
28 @ | 2n+1 3n+1 ime (20
29 (11) n+1 2n +1

Fig. 4. Sinusoids inputs and generated outputs of the KW Tivar

IV. SIMULATION RESULTS

To show the effectiveness and efficiency of the proposed
KWTA neural network, the following four simulations are
performed.

In the first simulation, the inputs are set tohye= ¢, (i = 5

1,2,3,4) andk = 2; that is, select two largest signals frc .

the inputs. The transient behaviorsaofire shown in Fig. 3

It can be seen that the steady outputs [aré 1 1]7. This

means two largest elements; i.e3, andv, are successfull
selected. From the figure, it is also obvious that the ne

network can quickly converge to the desired equilibria o e

|

the inputs are imposed. o}

In the second simulation, consider 4 sinusoidal input ol ] 1

a

nals ranged from-1 to 1 with constant phase difference a ° ! : ’ C et
k = 2. Fig. 4 illustrates the 4 input signals and the transient

outputs of the KWTA network. The simulation results show Fig. 5. Random inputs and generated outputs of the KWTA netwo

that the KWTA network can effectively determine the two
largest signals from the time-varying signals in real time.
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